Volume 2, issue 2 | Copyright

Special issue: The Science of Making Torque from Wind (TORQUE) 2016

Wind Energ. Sci., 2, 521-532, 2017
https://doi.org/10.5194/wes-2-521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research articles 20 Nov 2017

Research articles | 20 Nov 2017

Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill

Georg R. Pirrung1, Helge A. Madsen1, and Scott Schreck2 Georg R. Pirrung et al.
  • 1Wind Energy Department, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
  • 2National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

Abstract. Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as an addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against standstill measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in the case of the elliptical wing but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible. This article also contains aeroelastic simulations of the DTU 10MW reference turbine in standstill at turbulent inflow with a fixed and idling rotor. The influence of the trailed vorticity modeling on the extreme flapwise blade root bending moment is found to be small.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A near-wake model for wind turbines in operation is extended to cover these conditions. The model is validated in aerodynamic simulations of the NREL/NASA Ames Phase VI rotor. Good agreement with the experiments has been obtained in attached flow and beginning separation. Aeroelastic simulations of the DTU 10 MW turbine in standstill indicate a minor impact of the model.
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model...
Citation
Share