Volume 3, issue 1 | Copyright
Wind Energ. Sci., 3, 231-241, 2018
https://doi.org/10.5194/wes-3-231-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research articles 04 May 2018

Research articles | 04 May 2018

Aero-elastic wind turbine design with active flaps for AEP maximization

Michael K. McWilliam, Thanasis K. Barlas, Helge A. Madsen, and Frederik Zahle Michael K. McWilliam et al.
  • DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, Denmark

Abstract. In optimal wind turbine design, there is a compromise between maximizing the energy producing forces and minimizing the absolute peak loads carried by the structures. Active flaps are an attractive strategy because they give engineers greater freedom to vary the aerodynamic forces under any condition. Flaps can be used in a variety of different ways (i.e. reducing fatigue, peak loads), but this article focuses on how quasi-static actuation as a function of mean wind speed can be used for annual energy production (AEP) maximization. Numerical design optimization of the DTU 10MW reference wind turbine (RWT), with the HAWTOpt2 framework, was used to both find the optimal flap control strategy and the optimal turbine designs. The research shows that active flaps can provide a 1% gain in AEP for aero-structurally optimized blades in both add-on (i.e. the flap is added after the blade is designed) and integrated (i.e. the blade design and flap angle is optimized together) solutions. The results show that flaps are complementary to passive load alleviation because they provide high-order alleviation, where passive strategies only provide linear alleviation with respect to average wind speed. However, the changing loading from the flaps further complicates the design of torsionally active blades; thus, integrated design methods are needed to design these systems.

Download & links
Publications Copernicus
Download
Short summary
Maximizing wind energy production is challenging because the winds are always changing. Design optimization was used to explore how flaps can give rotor design engineers greater ability to adapt the rotor for different conditions. For rotors designed for peak efficiency (i.e. older designs) the flap adds 0.5 % improvement in energy production. However, for modern designs that optimize both the performance and the structure, the flap can provide a 1 % improvement.
Maximizing wind energy production is challenging because the winds are always changing. Design...
Citation
Share