Ahmed, M.: Optimisation de contrôle commande des systèmes de génération
d'électricité à cycle de relaxation, PhD Thesis, Université de Grenoble, 2014. a, b

Ahmed, M., Hably, A., and Bacha, S.: Power maximization of
a closed-orbit kite generator system, in: Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference
on, 7717–7722, IEEE, 2011. a, b

Amindoust, A., Ahmed, S.,
Saghafinia, A., and Bahreininejad, A.: Sustainable supplier selection: A ranking model based on fuzzy inference system, Appl. Soft
Comput., 12, 1668–1677, 2012. a

Archer, C. L., Delle Monache, L., and Rife, D. L.: Airborne wind
energy: Optimal locations and variability, Renew. Energ., 64, 180–186, 2014. a

Baayen, J. H. and Ockels, W. J.: Tracking control with adaption of kites, IET Control Theory A,
6, 182–191, 2012. a, b, c

Bobál, V., Böhm, J.,
Fessl, J., and Machácek, J.: Digital Self-tuning Controllers: Algorithms, Implementation and Applications, Springer Science &
Business Media, Berlin, 2006. a

Bondoky, K., Janschek, K., Rathke, A., and Schwarz, S.:
Analysis of Hardware-in-the-Loop setup without artificial compliance for docking contact dynamics of satellites, in: AIAA SPACE and
Astronautics Forum and Exposition, p. 5183, 2017. a

Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.:
Dynamic nonlinear aeroelastic model of a kite for power generation, J. Guid. Control Dynam., 37, 1426–1436, 2014. a

Burns, R.: Advanced control engineering, Butterworth-Heinemann, UK, 2001. a, b, c, d, e

Canale, M., Fagiano, L., and Milanese, M.: High altitude wind energy
generation using controlled power kites, IEEE T. Contr. Syst. T., 18, 279–293, 2010. a, b

Coleman, J., Ahmad, H., Pican, E., and Toal, D.:
Non-reversing generators in a novel design for pumping mode airbornewind energy farm, in: Airborne Wind Energy, edited by:
Ahrens, U., Diehl, M., and Schmehl, R., Springer, Berlin/Heidelberg, Germany, 587–597, 2013. a

Costello, S., François, G., and Bonvin, D.: Real-time
optimization for kites, IFAC Proc. Vol., 46, 64–69, 2013. a

Deif, T. N., Kassem, A. H., and El Baioumi, G. M.: Modeling,
Robustness, and Attitude Stabilization of Indoor Quad Rotor Using Fuzzy Logic Control, Int. Rev. Aerospace Engin., 7, 197–201,
https://doi.org/10.15866/irease.v7i6.4306, 2014. a, b

Diehl, M.: Real-time optimization for large scale nonlinear processes, PhD Thesis, Heidelberg University, Germany, 2001. a, b

Diehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer, F., Bock, H. G., Bürner, T., Gilles, E. D.,
Kienle, A., Schlöder, J. P., and Stein, E.,: Real-time optimization for large scale processes:
Nonlinear model predictive control of a high purity distillation column, in: Online Optimization of Large Scale Systems,
Springer Verlag, New York, 363–383, 2001. a, b

Dutton, K., Thompson, S., and Barraclough, B.: The art of control
engineering, Addison-Wesley Longman Publishing Co., Inc., Essex, UK, 1997. a

Erhard, M. and Strauch, H.: Control of towing kites for seagoing vessels, IEEE
T. Contr. Syst. T., 21, 1629–1640, 2013. a, b, c, d

Fagiano, L.: Control of tethered airfoils for high–altitude wind energy generation, PhD Thesis,
Politecnico di Torino, Italy, 2009. a, b

Fagiano, L. and Milanese, M.: Airborne wind energy: an overview, in: 2012 American Control
Conference (ACC), IEEE, 3132–3143, 2012. a, b

Fagiano, L., Milanese, M., and Piga, D.: Optimization of airborne wind
energy generators, Int. J. Robust Nonlin., 22, 2055–2083, 2012. a

Fagiano, L., Zgraggen, A. U., Morari, M., and Khammash, M.:
Automatic crosswind flight of tethered wings for airborne wind energy: Modeling, control design, and experimental results, IEEE
T. Contr. Syst. T., 22, 1433–1447, 2014. a, b, c

Fechner, U.: A Methodology for the Design of Kite-Power Control Systems, PhD Thesis, Delft
University of Technology, the Netherlands, 2016. a, b, c, d, e, f, g, h, i, j

Fechner, U. and Schmehl, R.: Design of a distributed kite power control system, in: Control
Applications (CCA), 2012 IEEE International Conference on, IEEE, 800–805, 2012. a, b

Fechner, U. and Schmehl, R.: Flight Path Planning in a Turbulent Wind Environment, in:
Airborne Wind Energy – Advances in Technology Development and Research, edited by: Schmehl, R., Springer, Berlin/Heidelberg, Germany, 361–390, 2018. a, b, c

Fechner, U., van der Vlugt, R., Schreuder, E., and
Schmehl, R.: Dynamic Model of a Pumping Kite Power System, Renew. Energ., 83, 705–716, https://doi.org/10.1016/j.renene.2015.04.028,
2015. a, b, c, d

Furey, A. D. J.: Evolutionary Robotics in High Altitude Wind Energy Applications, PhD Thesis,
University of Sussex, UK, 2012. a, b, c, d

Gohl, F. and Luchsinger, R. H.: Simulation based wing design for kite power,
in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer, Berlin/Heidelberg, Germany,
325–338, 2013. a

Goudarzi, M., Stonis, M., and Behrens, B.-A.: Development of
Lightweight Designs for the Production of Wind Turbine Towers, in: Enabling Manufacturing Competitiveness and Economic
Sustainability, Springer, Munich, Germany, 443–448, 2014. a

Houska, B. and Diehl, M.: Optimal control for power generating kites, in: Control Conference
(ECC), 2007 European, IEEE, 3560–3567, 2007. a

Ilzhöfer, A., Houska, B., and Diehl, M.: Nonlinear MPC of
kites under varying wind conditions for a new class of large-scale wind power generators, Int. J. Robust Nonlin., 17, 1590–1599,
2007. a, b

Jehle, C. and Schmehl, R.: Tracking control on the unit sphere applied to
traction kites for power generation, AIAA J. Guidance Control Dynamics, 37,
1211–1222, 2014a. a, b, c

Jehle, C. and Schmehl, R.: Applied tracking control for kite power systems,
J. Guid. Control Dynam., 37, 1211–1222, 2014b. a, b, c, d, e

Ockels, W. J.: Laddermill, a novel concept to exploit the energy in the airspace, Aircraft
Design, 4, 81–97, 2001. a

Plackett, R. L.: Some theorems in least squares, Biometrika, 37, 149–157, 1950. a

Reedy, J. and Lunzman, S.: Model based design accelerates the development of
mechanical locomotive controls, Tech. rep., SAE Technical Paper, 2010. a

Thorpe, D.: Modelling and control of tethered kite systems for wind energy extraction, PhD Thesis, RMIT University, Australia, 2011. a, b, c, d

van der Vlugt, R., Peschel, J., and Schmehl, R.: Design
and experimental characterization of a pumping kite power system, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and
Schmehl, R., Springer, Berlin/Heidelberg, Germany, 403–425, 2013. a, b, c, d

Viré, A.: How to float a wind turbine, Rev. Environ. Sci. Bio., 11, 223–226, 2012.
a

Viré, A., Xiang, J., Milthaler, F., Farrell, P. E., Piggott, M. D., Latham, J.-P., Pavlidis, D., and Pain, C. C.: Modelling of
fluid–solid interactions using an adaptive mesh fluid model coupled with a combined finite–discrete element model, Ocean Dynam.,
62, 1487–1501, https://doi.org/10.1007/s10236-012-0575-z, 2012. a

Williams, P., Lansdorp, B., and Ockels, W.: Modeling and control of
a kite on a variable length flexible inelastic tether, in: AIAA Guidance, navigation and control conference, 2007. a, b, c

Williams, P., Lansdorp, B., and Ockesl, W.: Optimal crosswind
towing and power generation with tethered kites, J. Guid. Control Dynam., 31, 81–93, 2008. a

Yen, J. and Langari, R.: Fuzzy logic: intelligence, control, and information, vol. 1,
Prentice Hall, Upper Saddle River, NJ, 1999. a

Zadeh, L. A.: Probability measures of fuzzy events, J. Math. Anal. Appl., 23, 421–427,
1968. a

Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst., 1, 3–28,
1978. a

Zgraggen, A. U.: Automatic Power Cycles for Airborne Wind Energy Generators, PhD Thesis, Diss.,
Eidgenössische Technische Hochschule ETH Zürich, Zürich, Nr. 22277, 2014. a, b, c, d