Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic
WES | Articles | Volume 3, issue 1
Wind Energ. Sci., 3, 371–393, 2018
https://doi.org/10.5194/wes-3-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 3, 371–393, 2018
https://doi.org/10.5194/wes-3-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research articles 14 Jun 2018

Research articles | 14 Jun 2018

Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing

Rochelle P. Worsnop et al.
Related authors  
Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer?
Antonia Englberger, Andreas Dörnbrack, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-45,https://doi.org/10.5194/wes-2019-45, 2019
Manuscript under review for WES
Short summary
Observed and simulated turbulent kinetic energy (WRF 3.8.1) overlarge offshore wind farms
Simon K. Siedersleben, Andreas Platis, Julie K. Lundquist, Bughsin Djath, Astrid Lampert, Konrad Bärfuss, Beatriz Canadillas, Johannes Schultz-Stellenfleth, Jens Bange, Tom Neumann, and Stefan Emeis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-100,https://doi.org/10.5194/gmd-2019-100, 2019
Manuscript under review for GMD
Short summary
An LES-based airborne Doppler lidar simulator for investigation of wind profiling in inhomogeneous flow conditions
Philipp Gasch, Andreas Wieser, Julie K. Lundquist, and Norbert Kalthoff
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-118,https://doi.org/10.5194/amt-2019-118, 2019
Manuscript under review for AMT
Short summary
Impact of model improvements on 80-m wind speeds during the second Wind Forecast Improvement Project (WFIP2)
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-80,https://doi.org/10.5194/gmd-2019-80, 2019
Manuscript under review for GMD
Short summary
Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1
Paul Fleming, Jennifer King, Katherine Dykes, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, Hector Lopez, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019,https://doi.org/10.5194/wes-4-273-2019, 2019
Short summary
Related subject area  
Design methods, reliability and uncertainty modelling
Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019,https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary
Polynomial chaos to efficiently compute the annual energy production in wind farm layout optimization
Andrés Santiago Padrón, Jared Thomas, Andrew P. J. Stanley, Juan J. Alonso, and Andrew Ning
Wind Energ. Sci., 4, 211–231, https://doi.org/10.5194/wes-4-211-2019,https://doi.org/10.5194/wes-4-211-2019, 2019
Short summary
Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine
Mads H. Aa. Madsen, Frederik Zahle, Niels N. Sørensen, and Joaquim R. R. A. Martins
Wind Energ. Sci., 4, 163–192, https://doi.org/10.5194/wes-4-163-2019,https://doi.org/10.5194/wes-4-163-2019, 2019
Short summary
Sensitivity of Uncertainty in Wind Characteristics and Wind Turbine Properties on Wind Turbine Extreme and Fatigue Loads
Amy N. Robertson, Kelsey Shaler, Latha Sethuraman, and Jason Jonkman
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-2,https://doi.org/10.5194/wes-2019-2, 2019
Revised manuscript accepted for WES
Short summary
Comparison between upwind and downwind designs of a 10 MW wind turbine rotor
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019,https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary
Cited articles  
A2E: WFIP2 Wind Forecast Improvement Project 2, available from: https://a2e.energy.gov/projects/wfip2, last access: 30 October 2017. 
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2015. 
Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., Finley, C., and Freedman, J.: A Wind Energy Ramp Tool and Metric for Measuring the Skill of Numerical Weather Prediction Models, Weather Forecast., 31, 1137–1156, https://doi.org/10.1175/WAF-D-15-0144.1, 2016. 
Bossavy, A., Girard, R., and Kariniotakis, G.: Forecasting ramps of wind power production with numerical weather prediction ensembles, Wind Energy, 16, 51–63, https://doi.org/10.1002/we.526, 2013. 
Bremnes, J. B.: A comparison of a few statistical models for making quantile wind power forecasts, Wind Energy, 9, 3–11, https://doi.org/10.1002/we.182, 2006. 
Publications Copernicus
Download
Short summary
This paper uses four statistical methods to generate probabilistic wind speed and power ramp forecasts from the High Resolution Rapid Refresh model. The results show that these methods can provide necessary uncertainty information of power ramp forecasts. These probabilistic forecasts can aid in decisions regarding power production and grid integration of wind power.
This paper uses four statistical methods to generate probabilistic wind speed and power ramp...
Citation