Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic
WES | Articles | Volume 3, issue 1
Wind Energ. Sci., 3, 371–393, 2018
https://doi.org/10.5194/wes-3-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 3, 371–393, 2018
https://doi.org/10.5194/wes-3-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Jun 2018

Research article | 14 Jun 2018

Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing

Rochelle P. Worsnop et al.
Related authors  
Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1
Jessica M. Tomaszewski and Julie K. Lundquist
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-302,https://doi.org/10.5194/gmd-2019-302, 2019
Manuscript under review for GMD
Short summary
Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019,https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
How wind speed shear and directional veer affect the power production of a megawatt-scale operational wind turbine
Patrick Murphy, Julie K. Lundquist, and Paul Fleming
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-86,https://doi.org/10.5194/wes-2019-86, 2019
Manuscript under review for WES
Short summary
Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2)
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019,https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer?
Antonia Englberger, Andreas Dörnbrack, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-45,https://doi.org/10.5194/wes-2019-45, 2019
Revised manuscript under review for WES
Short summary
Related subject area  
Design methods, reliability and uncertainty modelling
System-level design studies for large rotors
Daniel S. Zalkind, Gavin K. Ananda, Mayank Chetan, Dana P. Martin, Christopher J. Bay, Kathryn E. Johnson, Eric Loth, D. Todd Griffith, Michael S. Selig, and Lucy Y. Pao
Wind Energ. Sci., 4, 595–618, https://doi.org/10.5194/wes-4-595-2019,https://doi.org/10.5194/wes-4-595-2019, 2019
Short summary
Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads
Amy N. Robertson, Kelsey Shaler, Latha Sethuraman, and Jason Jonkman
Wind Energ. Sci., 4, 479–513, https://doi.org/10.5194/wes-4-479-2019,https://doi.org/10.5194/wes-4-479-2019, 2019
Short summary
Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
Lars Einar S. Stieng and Michael Muskulus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-61,https://doi.org/10.5194/wes-2019-61, 2019
Revised manuscript under review for WES
Short summary
RADAR-Derived Precipitation Climatology for Wind Turbine Blade Leading Edge Erosion
Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-43,https://doi.org/10.5194/wes-2019-43, 2019
Revised manuscript accepted for WES
Short summary
Massive Simplification of the Wind Farm Layout Optimization Problem
Andrew P. J. Stanley and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-37,https://doi.org/10.5194/wes-2019-37, 2019
Revised manuscript accepted for WES
Short summary
Cited articles  
A2E: WFIP2 Wind Forecast Improvement Project 2, available from: https://a2e.energy.gov/projects/wfip2, last access: 30 October 2017. 
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2015. 
Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., Finley, C., and Freedman, J.: A Wind Energy Ramp Tool and Metric for Measuring the Skill of Numerical Weather Prediction Models, Weather Forecast., 31, 1137–1156, https://doi.org/10.1175/WAF-D-15-0144.1, 2016. 
Bossavy, A., Girard, R., and Kariniotakis, G.: Forecasting ramps of wind power production with numerical weather prediction ensembles, Wind Energy, 16, 51–63, https://doi.org/10.1002/we.526, 2013. 
Bremnes, J. B.: A comparison of a few statistical models for making quantile wind power forecasts, Wind Energy, 9, 3–11, https://doi.org/10.1002/we.182, 2006. 
Publications Copernicus
Download
Short summary
This paper uses four statistical methods to generate probabilistic wind speed and power ramp forecasts from the High Resolution Rapid Refresh model. The results show that these methods can provide necessary uncertainty information of power ramp forecasts. These probabilistic forecasts can aid in decisions regarding power production and grid integration of wind power.
This paper uses four statistical methods to generate probabilistic wind speed and power ramp...
Citation