Akay, B.: The root flow of horizontal axis wind turbine blades: Experimental
analysis and numerical validation, Delft University of Technology, https://doi.org/10.4233/uuid:2a3f9993-d406-42ee-9d64-57da3fbc0d12, 2016. a

Arnal, D. and Juillen, J.: Three-dimensional transition studies at
ONERA/CERT,
in: 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, p. 1335, American Institute od Aeronautics and Astronautics, New York, 1987. a

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C.,
Natarajan,
A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine,
available at: http://dtu-10mw-rwt.vindenergi.dtu.dk (last access:
10 August 2018), 2017. a

Baldacchino, D., Ferreira, C., Tavernier, D. D., Timmer, W., and van Bussel,
G.: Experimental parameter study for passive vortex generators on a
30 %
thick airfoil, Wind Energy, 9, 745–765, https://doi.org/10.1002/we.2191, 2018. a

Bangga, G.: Three-Dimensional Flow in the Root Region of Wind Turbine Rotors,
Kassel University press GmbH, Kassel, 2018. a

Bangga, G., Lutz, T., Jost, E., and Krämer, E.: Erratum: “CFD studies on
rotational augmentation at the inboard sections of a 10 MW wind turbine
rotor” [J. Renew. Sustai. Ener., 9, 023304, 2017], J.
Renew. Sustain. Ener., 10, 019902, https://doi.org/10.1063/1.5024529, 2018. a

Benek, J. A., Steger, J. L., Dougherty, F. C., and Buning, P. G.: Chimera,
A Grid-Embedding Technique, Air Force Systems Command, Arnold Air Force Station, TN, 1986. a

Boorsma, K., Schepers, J., Gomez-Iradi, S., Herraez, I., Lutz, T., Weihing,
P.,
Oggiano, L., Pirrung, G., Madsen, H., Shen, W., Rahimi, H., and Schaffarczyk,
P.: Final report of IEA Task 29, Mexnet (Phase 3), IEA, ECN, Petten, the Netherlands, 2018. a

Bordji, M., Gand, F., Deck, S., and Brunet, V.: Investigation of a Nonlinear
Reynolds-Averaged Navier–Stokes Closure for Corner Flows, AIAA J., 54, 386–398, https://doi.org/10.2514/1.j054313,
2015. a, b, c, d

Devenport, W. J., Simpson, R. L., Dewitz, M. B., and Agarwal, N. K.: Effects
of
a leading-edge fillet on the flow past an appendage-body junction, AIAA
J., 30, 2177–2183, 1992. a, b

Drela, M. and Giles, M. B.: Viscous-inviscid analysis of transonic and low
Reynolds number airfoils, AIAA J., 25, 1347–1355, 1987. a, b

Du, Z. and Selig, M.: The effect of rotation on the boundary layer of a wind
turbine blade, Renew. Energ., 20, 167–181, 2000. a

Dwyer, H. and Aiccroskey, W.: Crossflow and unsteady boundary-layer effects
on
rotating blades, AIAA J., 9, 1498–1505, 1971. a

Eisfeld, B.: Implementation of Reynolds stress models into the DLR-FLOWer
code, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Aerodynamik und Strömungstechnik, Braunschweig,
2004. a

Gand, F., Monnier, J.-C., Deluc, J.-M., and Choffat, A.: Experimental study
of
the corner flow separation on a simplified junction, AIAA J., 53, 2869–2877, https://doi.org/10.2514/1.j053771,
2015. a, b, c, d

Grabe, C. and Krumbein, A.: Extension of the *γ*-Re*θ*t model for
prediction of crossflow transition, in: 52nd Aerospace Sciences Meeting,
p. 1269, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2014-1269,
2014. a

Guntur, S. and Sørensen, N. N.: A study on rotational augmentation using
CFD
analysis of flow in the inboard region of the MEXICO rotor blades, Wind
Energy, 18, 745–756, 2015. a

Herráez, I., Stoevesandt, B., and Peinke, J.: Insight into rotational
effects on a wind turbine blade using Navier–Stokes computations, Energies,
7, 6798–6822, 2014. a

Herráez, I., Akay, B., van Bussel, G. J. W., Peinke, J., and Stoevesandt,
B.: Detailed analysis of the blade root flow of a horizontal axis wind
turbine, Wind Energ. Sci., 1, 89–100, https://doi.org/10.5194/wes-1-89-2016,
2016. a, b

Himmelskamp, H.: Profile investigations on a rotating airscrew, MAP,
Völkenrode,
1947. a

Jameson, A.: Time dependent calculations using multigrid, with applications
to
unsteady flows past airfoils and wings, American Institute of Aeronautics and Astronautics, 1596, 1991. a

Jameson, A., Schmidt, W., and Turkel, E.: Numerical solutions of the Euler
equations by finite volume methods using Runge-Kutta time-stepping schemes,
American Institute of Aeronautics and Astronautics, 1259, https://doi.org/10.2514/6.1981-1259, 1981. a

Johansen, J. and Sørensen, N. N.: Aerofoil characteristics from 3D CFD
rotor
computations, Wind Energy, 7, 283–294, 2004. a, b

Johansen, J., Madsen, H. A., Sørensen, N., and Bak, C.: Numerical
Investigation of a Wind Turbine Rotor with an aerodynamically redesigned
hub-region, in: 2006 European wind energy conference and exhibition, Athens,
Greece, WindEurope, Brussels, 2006. a

Jost, E., Klein, L., Leiprand, H., Lutz, T., and Krämer, E.: Extracting
the
angle of attack on rotor blades from CFD simulations, Wind Energy, https://doi.org/10.1002/we.2196,
2018. a, b, c, d

Klein, L., Gude, J., Wenz, F., Lutz, T., and Krämer, E.: Advanced CFD-MBS
coupling to assess low-frequency emissions from wind turbines, Wind Energ.
Sci. Discuss., https://doi.org/10.5194/wes-2018-51, in review, 2018. a

Knezevici, D., Sjolander, S., Praisner, T., Allen-Bradley, E., and Grover,
E.:
Measurements of secondary losses in a turbine cascade with the implementation
of nonaxisymmetric endwall contouring, J. Turbomach., 132,
011013, https://doi.org/10.1115/1.3072520, 2010. a

Kowarsch, U., Keßler, M., and Krämer, E.: High order CFD-simulation
of the rotor-fuselage interaction, in: 39th European Rotorcraft Forum, Moscow, New York, 2013. a

Kroll, N., Rossow, C.-C., Becker, K., and Thiele, F.: The MEGAFLOW project,
Aerosp. Sci. Technol., 4, 223–237, 2000. a

Kühn, T., Altmikus, Daboul, H., Radi, A., Raasch, S., Knigge, C.,
Böske, L., Schwarz, T., Heister, C., Möller, A., Lutz, T., Weihing,
P., Schulz, C., Thiemeier, J., Mockett, C., Fuchs, M., and Thiele, F.:
AssiSt-Schlussbericht gemäß NKBF98, Tech. rep., WRD Wobben Research and Development GmbH, 2018. a, b

Langtry, R.: Extending the Gamma-Rethetat Correlation Based Transition Model
for Crossflow Effects, in: 45th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, p. 2474,
https://doi.org/10.2514/6.2015-2474,
2015. a

Langtry, R. B. and Menter, F. R.: Correlation-based transition modeling for
unstructured parallelized computational fluid dynamics codes, AIAA J.,
47, 2894–2906, 2009. a

Leishman, G. J.: Principles of helicopter aerodynamics with CD extra,
Cambridge University Press, New York, 2006. a

Leishman, J.: Modeling sweep effects on dynamic stall, J. Am. Helicopter
Soc., 34, 18–29, 1989. a

Letzgus, J., Dürrwächter, L., Schäferlein, U., Keßler, M.,
and
Krämer, E.: Optimization and HPC-Applications of the Flow Solver FLOWer,
in: High Performance Computing in Science and Engineering'17, 305–322, https://doi.org/10.1007/978-3-319-68394-2_18,
Springer, Switzerland, 2018. a

Levy, D. W., Laflin, K. R., Tinoco, E. N., Vassberg, J. C., Mani, M., Rider,
B., Rumsey, C. L., Wahls, R. A., Morrison, J. H., Brodersen, O. P., Crippa, S., Mavriplis, D. J., and Murayama, M.:
Summary of data from the fifth computational fluid dynamics drag prediction
workshop, J. Aircraft, 51, 1194–1213, https://doi.org/10.2514/1.c032389, 2014. a

Lindenburg, C.: Investigation into rotor blade aerodynamics, ECN Report,
ECN-C-03-025, Petten, the Netherlands, 2003. a, b, c

Loganathan, J. and Gopinath, G.: Advances in Wind Turbine Aerodynamics,
available at: https://www.iitk.ac.in/fmfp14/home_files/gopinath_slide.pdf (last access: 10 August 2018),
2018. a

Mack, L. M.: Boundary-layer linear stability theory, Tech. rep., California
Inst. of Technology Pasadena Jet Propulsion Lab, 1984. a

Masson, C. and Smaïli, A.: Numerical study of turbulent flow around a
wind
turbine nacelle, Wind Energy, 9, 281–298, 2006. a

McCormick, D.: Boundary layer separation control with directed synthetic
jets,
in: 38th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, p. 519, https://doi.org/10.2514/6.2000-519, 2000. a

Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering
applications, AIAA J., 32, 1598–1605, 1994. a, b

Obert, E.: Aerodynamic design of transport aircraft, IOS press, Amsterdam, the Netherlands,
2009. a

Post, M. L. and Corke, T. C.: Separation control on high angle of attack
airfoil using plasma actuators, AIAA J., 42, 2177–2184, 2004. a

Przewlocki, J.: Numerische Simulation einer vereinfachten Flügel-Rumpf
Konfiguration, Master's thesis, University of Stuttgart, Institute of
Aerodynamics and Gas Dynamics, Stuttgart, Germany, 2017. a, b

Purser, P. E. and Spearman, M. L.: Wind-tunnel tests at low speed of swept
and
yawed wings having various plan forms, Tech. rep., National Aeronautics And
Space Administration Hampton VA Langley Research Center, Langley Field, VA, 1951. a

Rahimi, H., Schepers, G., Shen, W. Z., García, N. R., Schneider, M.,
Micallef, D., Ferreira, C. S., Jost, E., Klein, L., and Herráez, I.:
Evaluation of different methods for determining the angle of attack on wind
turbine blades with CFD results under axial inflow conditions, arXiv, 125, 866–876, 2018. a, b

Rumsey, C. L., Neuhart, D., and Kegerise, M. A.: The NASA juncture flow
experiment: Goals, progress, and preliminary testing, in: 54th AIAA Aerospace
Sciences Meeting, p. 1557, 2016. a, b

Sayed, M., Lutz, T., Krämer, E., Shayegan, S., Ghantasala, A.,
Wüchner,
R., and Bletzinger, K.-U.: High fidelity CFD-CSD aeroelastic analysis of
slender bladed horizontal-axis wind turbine, J. Phys. Conf. Ser., 753, 042009, IOP Publishing, 2016. a

Schepers, J. and Snel, H.: Model experiments in controlled conditions, ECN
report, Petten, the Netherlands, 2007. a

Schepers, J., Boorsma, K., Cho, T., Gomez-Iradi, S., Schaffarczyk, P.,
Jeromin,
A., Lutz, T., Meister, K., Stoevesandt, B., Schreck, S., Micallef, D., Pereira, R., Sant, T., Madsen, A. H., and Sørensen, N. N.: Final report
of IEA Task 29, Mexnet (Phase 1): analysis of Mexico wind tunnel
measurements, IEA, Petten, the Netherlands, 2012. a

Schreck, S. and Robinson, M.: Rotational augmentation of horizontal axis wind
turbine blade aerodynamic response, Wind Energy, 5, 133–150, 2002. a, b

Schreck, S., Fingersh, L., Siegel, K., Singh, M., and Medina, P.: Rotational
augmentation on a 2.3-MW rotor blade with thick flatback airfoil cross
sections, in: Proceedings of the 51st AIAA Aerospace Sciences Meeting,
AIAA, Vol. 915, https://doi.org/10.2514/6.2013-915, 2013. a

Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanskil, I.:
Oscillatory blowing: a tool to delay boundary-layer separation, AIAA J.,
31, 2052–2060, 1993. a

Simpson, R. L.: Junction flows, Annu. Rev. Fluid Mech., 33, 415–443,
2001. a, b, c

Snel, H., Houwink, R., Bosschers, J., Piers, W., Van Bussel, G., and
Bruining,
A.: Sectional prediction of 3D effects for stalled flow on rotating blades
and comparison with measurements, in: Proc. European Community Wind Energy
Conference, HS Stevens and Associates, LÃ1, Vol. 4, Petten, the Netherlands, 1993. a

Sørensen, N., Hansen, M., Garca, N., Florentie, L., and Boorsma, K.: Power curve predictions wp2 deliverable 2.3, Technical Report, Petten, the Netherlands,
2014. a

Sørensen, N., Garca, N., Voutsinas, S., Jost, E., and Lutz, T.:
Aerodynamics
of Large Rotors WP2 Deliverable 2.6 Effects of complex inflow for the AVATAR
reference rotor and NM80 rotors, Technical Report, Petten, the Netherlands, 2017. a

Spalart, P. and Allmaras, S.: A one-equation turbulence model for aerodynamic
flows, in: 30th aerospace sciences meeting and exhibit, p. 439, 1992. a, b

Spalart, P. R.: Strategies for turbulence modelling and simulations,
Int. J. Heat Fluid Fl., 21, 252–263, 2000. a

Tanner, M.: Reduction of base drag, Prog. Aerosp. Sci., 16,
369–384, 1975. a

Thwaites, B.: Approximate calculation of the laminar boundary layer,
Aeronaut. Quart., 1, 245–280, 1949. a

Van Dam, C., Kahn, D. L., and Berg, D. E.: Trailing edge modifications for
flatback airfoils, SAND2008-1781, Sandia National Laboratories, Albuquerque,
NM, 2008. a

Vassberg, J., Tinoco, E., Mani, M., Rider, B., Zickuhr, T., Levy, D.,
Brodersen, O., Eisfeld, B., Crippa, S., Wahls, R., Morrison, J. H., Mavriplis, D. J., and Murayama, M.: Summary of the
Fourth AIAA CFD Drag Prediction Workshop (2010), AIAA Paper No, Tech. rep.,
AIAA-2010-4547, https://doi.org/10.2514/1.c032418, 2010. a

Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B.,
Wahls,
R. A., Morrison, J. H., Zickuhr, T., Laflin, K. R., and Mavriplis, D. J.:
Abridged summary of the third AIAA computational fluid dynamics drag
prediction workshop, J. Aircraft, 45, 781–798, 2008. a, b, c, d

Weihing, P., Letzgus, J., Bangga, G., Lutz, T., and Krämer, E.: Hybrid
RANS/LES capabilities of the flow solver FLOWer-application to flow around
wind turbines, in: The 6th Symposium on Hybrid RANS-LES Methods,
Strassbourg, https://doi.org/10.1007/978-3-319-70031-1_31
2016. a, b

Weihing, P., Schulz, C., Lutz, T., and Krämer, E.: Comparison of the
Actuator Line Model with Fully Resolved Simulations in Complex Environmental
Conditions, J. Phys. Conf. Ser., 854, 012049,
IOP Publishing, 2017.
a

Zahle, F. and Sørensen, N. N.: Characterization of the unsteady flow in
the
nacelle region of a modern wind turbine, Wind Energy, 14, 271–283, 2011. a

Zamir, M.: Similarity and stability of the laminar boundary layer in a
streamwise corner, P. Roy. Soc. Lond. A, 377, 269–288, 1981. a, b

Zess, G. and Thole, K.: Computational design and experimental evaluation of
using a leading edge fillet on a gas turbine vane, in: ASME Turbo Expo 2001:
Power for Land, Sea, and Air, V003T01A083, American Society
of Mechanical Engineers, https://doi.org/10.1115/2001-gt-0404, 2001. a