Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C.,
Natarajan,
A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine,
Tech. Rep. I-0092, Technical University of Denmark, Department of Wind
Energy, 2013. a, b, c

Berg, J., Natarajan, A., Mann, J., and Patton, E.: Gaussian vs non-Gaussian
turbulence: impact on wind turbine loads, Wind Energy, 19, 1975–1989, 2016. a

Borraccino, A., Schlipf, D., Haizmann, F., and Wagner, R.: Wind field
reconstruction from nacelle-mounted lidar short-range measurements, Wind
Energ. Sci., 2, 269–283, https://doi.org/10.5194/wes-2-269-2017, 2017. a

Caflisch, R. E.: Monte Carlo and Quasi-Monte Carlo methods, Acta Numer., 7,
1–49, 1998. a

Choe, Y., Byon, E., and Chen, N.: Importance Sampling for Reliability
Evaluation With Stochastic Simulation Models, Technometrics, 57, 351–361,
https://doi.org/10.1080/00401706.2014.1001523, 2015. a

Clifton, A., Schreck, S., Scott, G., Kelley, N., and Lundquist, J.: Turbine
Inflow Characterization at the National Wind Technology Center, J. Sol. Energ.-T. ASME, 135, 031017, https://doi.org/10.1115/1.4024068, 2013. a

Dimitrov, N., Natarajan, A., and Kelly, M.: Model of wind shear conditional
on turbulence and its impact on wind turbine loads, Wind Energy, 18,
1917–1931, 2015. a, b

Dimitrov, N., Natarajan, A., and Mann, J.: Effect of Normal and Extreme
turbulence spectral parameters on wind turbine loads, Renew. Energ., 101,
1180–1193, 2017. a, b, c

Ditlevsen, O. and Madsen, H. O.: Structural Reliability Methods, John Wiley & Sons
Inc., Chichester, England,
1996. a

Efron, B.: Bootstrap methods: another look at the jackknife, Ann. Stat., 7,
1–26, 1979. a

Galinos, C., Dimitrov, N., Larsen, T. J., Natarajan, A., and Hansen, K. S.:
Mapping Wind Farm Loads and Power Production – A Case Study on Horns Rev 1,
J. Phys. Conf. Ser., 753, 032010, https://doi.org/10.1088/1742-6596/753/3/032010, 2016. a

Ganesh, N. and Gupta, S.: Estimating the Rain-Flow Fatigue Damage in Wind
Turbine Blades Using Polynomial Chaos, in: Proceedings of the International
Symposium on Engineering under Uncertainty: Safety Assessment and Management
(ISEUSAM – 2012), https://doi.org/10.1007/978-81-322-0757-3, 2013. a

Ghanem, R. G. and Spanos, P. D.: Stochastic finite elements – a spectral
approach, Springer, Berlin, 1991. a, b

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
available at:
http://www.deeplearningbook.org (last access: 13 October 2018), 2016. a

Graf, P., Dykes, K., Damiani, R., Jonkman, J., and Veers, P.: Adaptive
stratified importance sampling: hybridization of extrapolation and importance
sampling Monte Carlo methods for estimation of wind turbine extreme loads,
Wind Energ. Sci., 3, 475–487, https://doi.org/10.5194/wes-3-475-2018, 2018. a

Graf, P. A., Stewart, G., Lackner, M., Dykes, K., and Veers, P.:
High-throughput computation and the applicability of Monte Carlo integration
in fatigue load estimation of floating offshore wind turbines, Wind Energy,
19, 861–872, https://doi.org/10.1002/we.1870, 2016. a

Häfele, J., Hübler, C., Gebhardt, C. G., and Rolfes, R.: A
comprehensive fatigue load set reduction study for offshore wind turbines
with jacket substructures, Renew. Energ., 118, 99–112,
https://doi.org/10.1016/j.renene.2017.10.097, 2018. a

Hansen, B. O., Courtney, M., and Mortensen, N. G.: Wind Resource Assessment
–
Østerild National Test Centre for Large Wind Turbines, Tech. Rep. E-0052,
Technical University of Denmark, Department of Wind Energy, 2014. a

Hansen, M. H. and Henriksen, L. C.: Basic DTU Wind Energy Controller, Tech.
Rep. E-0028, Technical University of Denmark, Department of Wind Energy,
2013. a

Hübler, C., Gebhardt, C. G., and Rolfes, R.: Hierarchical four-step
global sensitivity analysis of offshore wind turbines based on aeroelastic
time domain simulations, Renew. Energ., 111, 878–891,
https://doi.org/10.1016/j.renene.2017.05.013, 2017. a

IEC: International Standard IEC61400-1: Wind Turbines – Part
1: Design Guidelines, 3rd Edn., 2005. a, b, c

Kashef, T. and Winterstein, S. R.: Relating turbulence to wind turbine blade
loads: parametric study with multiple regression analysis, Solar Energy Engineering, 121, 156–161, 1999. a

Kelly, M.: From standard wind measurements to spectral characterization:
turbulence length scale and distribution, Wind Energ. Sci., 3, 533–543,
https://doi.org/10.5194/wes-3-533-2018, 2018. a, b

Kelly, M. and van der Laan, P.: Veer and shear relations: beyond Ekman,
towards statistical characterization, Q. J. Roy.
Meteor. Soc., in preparation, 2018. a

Kelly, M., Larsen, G., Natarajan, A., and Dimitrov, N.: Probabilistic
meteorological characterization for turbine loads, J. Phys.
Conf. Ser., 524, 012076, https://doi.org/10.1088/1742-6596/524/1/012076, 2014. a, b, c

Larsen, T. J. and Hansen, A. M.: How to HAWC2, the user's manual, Tech.
Rep. R-1597, Technical University of Denmark, Department of Wind Energy,
2012. a, b

Lataniotis, C., Marelli, S., and Sudret, B.: UQLab user manual – Kriging
(Gaussian process modelling), Tech. rep., Chair of Risk, Safety &
Uncertainty Quantification, ETH Zurich, report UQLab-V0.9-105, 2015. a, b, c

Liu, P. L. and Der Kiureghian, A.: Multivariate distribution models with
prescribed marginals and covariances, Probabilist. Eng. Mech., 1,
105–112, 1986. a

Mann, J.: The spatial structure of neutral atmospheric surface-layer
turbulence, J. Fluid Mech., 273, 141–168, 1994. a, b

Mann, J.: The spectral velocity tensor in moderately complex terrain, J. Wind
Eng., 88, 153–169, 2000. a

Manuel, L., Veers, P. S., and Winterstein, S. R.: Parametric models for
estimating wind turbine fatigue loads for design, Solar Energy Engineering,
123, 346–355, 2001. a

Morokoff, W. J. and Caflisch, R. E.: Quasi-Monte Carlo Integration,
Computational Physics, 122, 218–230, 1995. a, b, c

Mouzakis, F., Morfiadakis, E., and Dellaportas, P.: Fatigue loading parameter
identification of a wind turbine operating in complex terrain, Wind
Engineering and Industrial Aerodynamics, 82, 69–88, 1999. a

Müller, K. and Cheng, P. W.: Application of a Monte Carlo procedure for
probabilistic fatigue design of floating offshore wind turbines, Wind Energ.
Sci., 3, 149–162, https://doi.org/10.5194/wes-3-149-2018, 2018. a

Müller, K., Dazer, M., and Cheng, P. W.: Damage Assessment of Floating
Offshore Wind Turbines Using Response Surface Modeling, Enrgy. Proced.,
137, 119–133, https://doi.org/10.1016/j.egypro.2017.10.339, 2017. a, b

Murcia, J. P., Réthoré, P.-E., Dimitrov, N., Natarajan, A.,
Sørensen, J. D.,
Graf, P., and Kim, T.: Uncertainty propagation through an aeroelastic wind
turbine model using polynomial surrogates, Renew. Energ., 119, 910–922,
https://doi.org/10.1016/j.renene.2017.07.070, 2018. a

Peña, A., Floors, R., Sathe, A., Gryning, S.-E., Wagner, R., Courtney,
M. S., Larsén, X. G., Hahmann, A. N., and Hasager, C. B.: Ten Years of
Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark,
Bound.-Lay. Meteorol., 158, 1–26, https://doi.org/10.1007/s10546-015-0079-8, 2016. a

Rosenblatt, M.: Remarks on a multivariate transformation, Ann.
Math. Stat., 23, 470–472, 1952. a

Rychlik, I.: A New Definition of the Rainflow Cycle Counting Method,
Int. J. Fatigue, 9, 119–121, 1987.
a

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P.: Design and
analysis
of computer experiments, Stat. Sci., 4, 409–423, 1989. a, b, c, d, e

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D.,
Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer,
John Wiley & Sons Inc., Chichester, England, 2008. a

Santher, T. J., Williams, B. J., and Notz, W. I.: The design and analysis of
computer experiments, Springer-Verlag, New York, 2003. a, b, c

Sobol, I.: Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates, Mathematics and Computers in Simulation, 55,
271–280, 2001. a

Stewart, G. M.: Design Load Analysis of Two Floating Offshore Wind Turbine
Concepts, PhD thesis, University of Massachusetts – Amherst,
available at: https://scholarworks.umass.edu/dissertations_2/601/ (last
access: 13 October 2018), 2016. a

Sudret, B.: Global sensitivity analysis using polynomial chaos expansions,
Reliability Engineering and Systems Safety, 93, 964–979, 2008. a, b, c, d, e

Teixeira, R., O'Connor, A., Nogal, M., Krishnan, N., and Nichols, J.:
Analysis
of the design of experiments of offshore wind turbine fatigue reliability
design with Kriging surfaces, Procedia Structural Integrity, 5, 951–958,
https://doi.org/10.1016/j.prostr.2017.07.132, 2017. a, b

Tibshirani, R.: Regression shrinkage and selection via the lasso, J. R. Stat.
Soc. B, 58, 267–288, 1996. a, b

Toft, H. S., Svenningsen, L., Moser, W., Sørensen, J. D., and
Thørgensen,
M. L.: Assessment of Wind Turbine Structural Integrity using Response Surface
Methodology, Engineering Structures, 106, 471–483, 2016. a, b, c, d

Xiu, D. and Karniadakis, G. E.: The Wiener-Askey polynomial chaos for
stochastic differential equations, J. Sci. Comput., 191,
4927–4948, 2002. a, b, c

Yang, H., Zhu, Y., Lu, Q., and Zhang, J.: Dynamic reliability based design
optimization of the tripod sub-structure of offshore wind turbines,
Renew. Energ., 78, 16–25, https://doi.org/10.1016/j.renene.2014.12.061, 2015. a

Zwick, D. and Muskulus, M.: Simplified fatigue load assessment in offshore
wind turbine structural analysis, Wind Energy, 19, 265–278,
https://doi.org/10.1002/we.1831, 2016. a