Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic
WES | Articles | Volume 3, issue 2
Wind Energ. Sci., 3, 833-843, 2018
https://doi.org/10.5194/wes-3-833-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 3, 833-843, 2018
https://doi.org/10.5194/wes-3-833-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research articles 02 Nov 2018

Research articles | 02 Nov 2018

Do wind turbines pose roll hazards to light aircraft?

Jessica M. Tomaszewski et al.
Related authors  
The aerodynamics of the curled wake: a simplified model in view of flow control
Luis A. Martínez-Tossas, Jennifer Annoni, Paul A. Fleming, and Matthew J. Churchfield
Wind Energ. Sci., 4, 127-138, https://doi.org/10.5194/wes-4-127-2019,https://doi.org/10.5194/wes-4-127-2019, 2019
Short summary
Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713-2723, https://doi.org/10.5194/acp-19-2713-2019,https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Initial Results From a Field Campaign of Wake Steering Applied at a Commercial Wind Farm: Part 1
Paul Fleming, Jennifer King, Katherine Dykes, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, Hector Lopez, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-5,https://doi.org/10.5194/wes-2019-5, 2019
Manuscript under review for WES
Short summary
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, and Larry K. Berg
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1131,https://doi.org/10.5194/acp-2018-1131, 2018
Revised manuscript accepted for ACP
Short summary
Assessing variability of wind speed: comparison and validation of 27 methodologies
Joseph C. Y. Lee, M. Jason Fields, and Julie K. Lundquist
Wind Energ. Sci., 3, 845-868, https://doi.org/10.5194/wes-3-845-2018,https://doi.org/10.5194/wes-3-845-2018, 2018
Short summary
Related subject area  
Wind and turbulence
Brief communication: Wind inflow observation from load harmonics – wind tunnel validation of the rotationally symmetric formulation
Marta Bertelè, Carlo L. Bottasso, and Stefano Cacciola
Wind Energ. Sci., 4, 89-97, https://doi.org/10.5194/wes-4-89-2019,https://doi.org/10.5194/wes-4-89-2019, 2019
Short summary
Low-level jets over the North Sea based on ERA5 and observations: together they do better
Peter C. Kalverla, James B. Duncan Jr., Gert-Jan Steeneveld, and Albert A. M. Holtslag
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-79,https://doi.org/10.5194/wes-2018-79, 2019
Revised manuscript accepted for WES
Short summary
Micro-scale model comparison (benchmark) at the moderately complex forested site Ryningsnäs
Stefan Ivanell, Johan Arnqvist, Matias Avila, Dalibor Cavar, Roberto Aurelio Chavez-Arroyo, Hugo Olivares-Espinosa, Carlos Peralta, Jamal Adib, and Björn Witha
Wind Energ. Sci., 3, 929-946, https://doi.org/10.5194/wes-3-929-2018,https://doi.org/10.5194/wes-3-929-2018, 2018
Short summary
Experimental validation of a ducted wind turbine design strategy
Benjamin Kanya and Kenneth D. Visser
Wind Energ. Sci., 3, 919-928, https://doi.org/10.5194/wes-3-919-2018,https://doi.org/10.5194/wes-3-919-2018, 2018
Short summary
Near-wake analysis of actuator line method immersed in turbulent flow using large-eddy simulations
Jörn Nathan, Christian Masson, and Louis Dufresne
Wind Energ. Sci., 3, 905-917, https://doi.org/10.5194/wes-3-905-2018,https://doi.org/10.5194/wes-3-905-2018, 2018
Short summary
Cited articles  
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbul., 17, 420–441, https://doi.org/10.1080/14685248.2015.1127379, 2016. a
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/JTECH-D-13-00104.1, 2014a. a
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model, J. Renew. Sustain. Ener., 6, 033137, https://doi.org/10.1063/1.4885111, 2014b. a, b
Baker, R. W. and Walker, S. N.: Wake measurements behind a large horizontal axis wind turbine generator, Sol. Energy, 33, 5–12, 1984. a, b
Ba˙serud, L., Flügge, M., Bhandari, A., and Reuder, J.: Characterization of the SUMO Turbulence Measurement System for Wind Turbine Wake Assessment, Enrgy Proced., 53, 173–183, https://doi.org/10.1016/j.egypro.2014.07.226, 2014. a
Publications Copernicus
Download
Short summary
Wind energy development has increased rapidly in rural locations of the United States, areas that also serve general aviation airports. The spinning rotor of a wind turbine creates an area of increased turbulence, and we question if this turbulent air could pose rolling hazards for light aircraft flying behind turbines. We analyze high-resolution simulations of wind flowing past a turbine to quantify the rolling risk and find that wind turbines pose no significant roll hazards to light aircraft.
Wind energy development has increased rapidly in rural locations of the United States, areas...
Citation