Apsley, D. D. and Castro, I. P.: A limited-length-scale *k*–*ϵ* model
for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay.
Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997. a, b

Arnqvist, J., Segalini, A., and Dellwik, E.: Wind Statistics from a Forested
Landscape, Bound.-Lay. Meteorol., 156, 53–71,
https://doi.org/10.1007/s10546-015-0016-x, 2015. a, b, c, d

Avila, M., Codina, R., and Principe, J.: Finite element dynamical
subgrid-scale model for low Mach number flows with radiative heat transfer,
Int. J. Numer. Method H., 25, 1361–1384, 2015. a

Avila, M., Gargallo-Peiro, A., and Folch, A.: A CFD framework for offshore
and onshore wind farm simulation, J. Phys. Conf. Ser., 854, 012002,
https://doi.org/10.1088/1742-6596/854/1/012002, 2017. a

Ayotte, K. W.: Computational Modelling For Wind Energy Assessment, J. Wind
Eng. Ind. Aerod., 96, 1571–1590, https://doi.org/10.1016/j.jweia.2008.02.002, 2008. a

Bechmann, A.: Large-Eddy Simulation of Atmospheric Flow over Complex, PhD
thesis, Risø Technical University of Denmark, Roskilde, Denmark, 2006. a

Bechmann, A., Sørensen, N. N., Berg, J., Mann, J., and Réthoré,
P.-E.: The Bolund Experiment, Part II: Blind Comparison of Microscale Flow
Models, Bound.-Lay. Meteorol., 141, 245, https://doi.org/10.1007/s10546-011-9637-x,
2011. a

Blackadar, A. K.: The vertical distribution of wind and turbulent exchange in
a neutral atmosphere, J. Geophys. Res., 67, 3095–3102,
https://doi.org/10.1029/JZ067i008p03095, 1962. a

Bosveld, F. C., Baas, P., Steeneveld, G.-J., Holtslag, A. A. M., Angevine,
W. M., Bazile, E., de Bruijn, E. I. F., Deacu, D., Edwards, J. M., Ek, M.,
Larson, V. E., Pleim, J. E., Raschendorfer, M., and Svensson, G.: The Third
GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models.
Part B: Results and Process Understanding, Bound.-Lay. Meteorol., 152,
157–187, https://doi.org/10.1007/s10546-014-9919-1, 2014. a

Boudreault, L.-É.: Reynolds-averaged Navier-Stokes and Large-Eddy
Simulation Over and Inside Inhomogeneous Forests, PhD thesis, Technical
University of Denmark, Department of Mechanical Engineering, 2015. a, b, c

Boudreault, L. É., Bechmann, A., Tarvainen, L., Klemedtsson, L.,
Shendryk, I., and Dellwik, E.: A LiDAR method of canopy structure retrieval
for wind modeling of heterogeneous forests, Agr. Forest Meteorol., 201,
86–97, https://doi.org/10.1016/j.agrformet.2014.10.014, 2015. a

Cavar, D., Réthoré, P.-E., Bechmann, A., Sørensen, N. N.,
Martinez, B., Zahle, F., Berg, J., and Kelly, M. C.: Comparison of OpenFOAM
and EllipSys3D for neutral atmospheric flow over complex terrain, Wind Energ.
Sci., 1, 55–70, https://doi.org/10.5194/wes-1-55-2016, 2016. a

CFD Direct: OpenFOAM User Guide, available at:
https://cfd.direct/openfoam/user-guide/ (last access: 8 December 2018), 2015. a

Chávez-Arroyo, R., Sanz-Rodrigo, J., and Gancarski, P.: Modelling of
atmospheric boundary-layer flow in complex terrain with different forest
parameterizations, J. Phys. Conf. Ser., 524, 012119,
https://doi.org/10.1088/1742-6596/524/1/012119, 2014. a

Churchfield, M. J., Lee, S., and Moriarty, P. J.: Adding complex terrain and
stable atmospheric condition capability to the OpenFOAM-based flow solver of
the simulator for on/offshore wind farm applications (SOWFA), in: ITM Web
of Conferences, vol. 2, EDP Sciences, 2014. a

Codina, R.: Comparison of some finite element methods for solving the
diffusion-convection-reaction equation, Comput. Method Appl. M., 156,
185–210, 1998. a

Codina, R. and Soto, O.: Finite element implementation of two-equation and
algebraic stress turbulence models for steady incompressible flows, Int. J.
Num. Meth. Fluids, 30, 309–334, 1999. a

Costa, J. C. P. L. D.: Atmospheric Flow over Forested and Non-Forested
Complex Terrain, PhD thesis, University of Porto, Porto, Portugal, 2007. a

Crasto, G.: Forest Modeling, A canopy model for WindSim 4.5, University
Lecture, 2006. a

Deardorff, J.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980. a

Delaunay, D.: Meteodyn, available at:
http://www.meteodyn.com (last access: 8 December 2018),
2007. a, b

Delaunay, D.: Modelling the stable boundary layer for wind resource
assessment, available at:
http://meteodyn.com/en/area/renewable-energies/wind-power-modelling-forecast-papers/#.WQwr62nyhaR (last access: 8 December 2018), 2013. a

Detering, H. W. and Etling, D.: Application of the E-*ε*
turbulence model to the atmospheric boundary layer, Bound.-Lay. Meteorol.,
33, 113–133, 1985. a

Enevoldsen, P.: Onshore wind energy in Northern European forests: Reviewing
the risks, Renew. Sust. Energ. Rev., 60, 1251–1262,
https://doi.org/10.1016/j.rser.2016.02.027, 2016. a

Gancarski, P. and Chávez-Arroyo, R.: Meshing procedure for the atmospheric
wind flow modelling, Zenodo, https://doi.org/10.5281/zenodo.1000490, 2017. a, b, c

Gargallo-Peiró, A., Avila, M., Owen, H., Prieto, L., and Folch, A.: Mesh
generation for Atmospheric Boundary Layer simulation in wind farm design and
management, Procedia Engineer., 124, 239–251,
https://doi.org/10.1016/j.proeng.2015.10.136, 2015. a, b

Högström, U.: Review of some basic characteristics of the
atmospheric surface layer, Bound.-Lay. Meteorol., 78, 215–246, 1996. a

Houzeaux, G., Aubry, R., and Vazquez, M.: Extension of fractional step
techniques for incompressible flows: The preconditioned Orthomin(1) for the
pressure Schur complement, Comput. Fluids, 44, 297–313, 2011. a

Hurley, P.: An evaluation of several turbulence schemes for the prediction
of mean and turbulent fields in complex terrain, Bound.-Lay. Meteorol., 83,
43–73, 1997. a

Jackson, S.: On the displacement height in the logarithmic velocity profile,
J. Fluid Mech., 111, 15–25, 1981. a

Kanani, F., Träumner, K., Ruck, B., and Raasch, S.: What determines the
differences found in forest edge flow between physical models and atmospheric
measurements? – An LES study, Meteorol. Z., 23, 33–49, 2014. a

Lantmäteriet: Laser data – Laserdata Skog, Tech. rep., Lantmäteriet,
Sweden, available at:
https://www.lantmateriet.se/contentassets/d85c20e0e23846538330674fbfe8c8ac/lidar_data_skog.pdf (last access: 1 June 2018), 2016. a

Launder, B. and Spalding, D.: The numerical computation of turbulent flows,
Comput. Method Appl. M., 3, 269–289, 1974. a

Leibniz Universität Hannover: PALM – A parallelized large-eddy
simulation model for atmospheric and oceanic flows, available at:
http://palm.muk.uni-hannover.de, last access: 8 December 2018. a

Lohner, R., Mut, F., Cebral, J. R., Aubry, R., and Houzeaux, G.: Deflated
preconditioned conjugate gradient solvers for the pressure-Poisson equation:
Extensions and improvements, Int. J. Numer. Meth. Eng., 87, 2–14, 2011. a

Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C.,
Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn,
P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A.,
Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues, C. V.:
Complex terrain experiments in the New European Wind Atlas, Philos. T. R.
Soc. A, 375, 20160101, https://doi.org/10.1098/rsta.2016.0101, 2017. a, b

Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F.,
Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The
Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric
and oceanic flows: model formulation, recent developments, and future
perspectives, Geosci. Model Dev., 8, 2515–2551,
https://doi.org/10.5194/gmd-8-2515-2015, 2015. a

Nebenführ, B.: Turbulence-resolving simulations for engineering
applications, PhD thesis, Chalmers University of Technology, Gothenburg,
Sweden, 2015. a

Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: The
characteristics of turbulent velocity components in the surface layer under
convective conditions, Bound.-Lay. Meteorol., 11, 355–361,
https://doi.org/10.1007/BF02186086, 1977. a

Pinker, R. T. and Holland, J. Z.: Turbulence structure of a tropical forest,
Bound.-Lay. Meteorol., 43, 43–63, https://doi.org/10.1007/BF00153968, 1988. a

Richards, P. J. and Hoxey, R. P.: Appropriate boundary conditions for
computational wind engineering models using the *k*–*ϵ* turbulence
model, J. Wind Eng. Ind. Aerod., 46, 145–153, 1993. a

Schumann, U.: Subgrid scale model for finite difference simulations of
turbulent flows in plane channels and annuli, J. Comput. Phys., 18, 376–404,
1975. a

Shaw, R. H. and Schumann, U.: Large-eddy simulation of turbulent flow above
and within a forest, Bound.-Lay. Meteorol., 61, 47–64, 1992.
a, b

Smith, F. B., Carson, D. J., and Oliver, H. R.: Mean wind-direction shear
through a forest canopy, Bound.-Lay. Meteorol., 3, 178–190,
https://doi.org/10.1007/BF02033917, 1972. a

Sogachev, A. and Panferov, O.: Modification of Two-Equation Models to Account
for Plant Drag, Bound.-Lay. Meteorol., 121, 229–266,
https://doi.org/10.1007/s10546-006-9073-5, 2006. a, b, c, d

Soto, O., Lohner, R., and Camelli, F.: A linelet preconditioner for
incompressible flow solvers, Int. J. Numer. Method. H., 13, 133–147, 2003. a

van der Laan, M. P. and Sørensen, N. N.: Why the Coriolis force turns a
wind farm wake clockwise in the Northern Hemisphere, Wind Energ. Sci., 2,
285–294, https://doi.org/10.5194/wes-2-285-2017, 2017. a

Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J.,
Arís, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A.,
Burness, E. D., Cela, J. M., and Valero, M.: Alya: Multiphysics engineering
simulation toward exascale, J. Comput. Sci., 14, 15–27, , 2016. a

WAsP: WAsP digital maps formats, available at:
http://www.wasp.dk, last access: 1 June 2018. a

Watanabe, T.: Large-Eddy Simulation of Coherent Turbulence
Structures Associated With Scalar Ramps Over Plant Canopies,
Bound.-Lay. Meteorol., 112, 307–341, 2004. a

Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to
computational continuum mechanics using object-oriented techniques, Comput.
Phys., 12, 620–631, https://doi.org/10.1063/1.168744, 1998. a

WindPro: WindPro documentation, available at:
http://www.emd.dk/files/windpro/WindPRO_OnlineData.pdf (last access: 8 December 2018), 2009. a

Wyngaard, J. C.: Turbulence in the Atmosphere, Cambridge University Press,
https://doi.org/10.1017/CBO9780511840524, 2010. a

Yoshizawa, A.: Statistical theory for compressible turbulent shear flows,
with the application to subgrid modelling, Phys. Fluids, 29, 2152,
https://doi.org/10.1063/1.865552, 1986. a

Yoshizawa, A. and Horiuti, K.: A statistically-derived subgrid-scale kinetic
energy model for the large-eddy simulation of turbulent flows, J. Phys. Soc.
Jpn., 54, 2834–2839, 1985. a