Ananthan, S. and Leishman, J. G.: Role of Filament Strain in the Free-Vortex
Modeling of Rotor Wakes, J. Am. Helicopter Soc., 9,
176–191, 2004. a

Dag, K., Sørensen, J., Sørensen, N., and Shen, W.: Combined
pseudo-spectral/actuator line model for wind turbine applications, PhD
thesis, DTU Wind Energy, Denmark, 2017. a, b, c, d, e, f

Forsythe, J. R., Lynch, E., Polsky, S., and Spalart, P.: Coupled Flight
Simulator and CFD Calculations of Ship Airwake using Kestrel, in: 53rd AIAA
Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, USA, https://doi.org/10.2514/6.2015-0556, 2015. a

Glauert, H.: Airplane Propellers, Springer Berlin Heidelberg,
Berlin, Heidelberg, 169–360, https://doi.org/10.1007/978-3-642-91487-4_3, 1935. a

Jha, P. K., Churchfield, M. J., Moriarty, P. J., and Schmitz, S.: Guidelines
for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines
on Large-Eddy Simulation-Type Grids, J. Sol. Energ.-T. ASME,
136, 031003, https://doi.org/10.1115/1.4026252,
2014. a

Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW
reference wind turbine for offshore system development, Tech. rep., NREL/TP-500-38060, National Renewable Energy Laboratory (NREL), Colorado, USA,
2009. a

Lamb, H.: Hydrodynamics, C.U.P, 6th Edn., Cambridge University Press, Cambridge, 1932. a, b, c

Leishman, J. G., Bhagwat, M. J., and Bagai, A.: Free-Vortex Filament Methods
for the Analysis of Helicopter Rotor Wakes, J. Aircraft, 39,
759–775, 2002. a

Leonard, B.: A stable and accurate convective modelling procedure based on
quadratic upstream interpolation, Comput. Method. Appl. M., 19, 59–98, 1979. a

Madsen, H. A., Sørensen, N. N., Bak, C., Troldborg, N., and Pirrung, G.:
Measured aerodynamic forces on a full scale 2 MW turbine in comparison with
EllipSys3D and HAWC2 simulations, J. Phys. Conf. Ser.,
1037, 022011, https://doi.org/10.1088/1742-6596/1037/2/022011, 2018. a

Martínez-Tossas, L. A. and Meneveau, C.: Filtered lifting line theory and
application to the actuator line model, J. Fluid Mech., 863,
269–292, https://doi.org/10.1017/jfm.2018.994, 2019. a, b

Menter, F. R.: Zonal two equation *k*−*ω* turbulence models for aerodynamic
flows, in: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference,
Fluid Dynamics and Co-located Conferences, Orlando,FL,
https://doi.org/10.2514/6.1993-2906, 1993. a

Meyer Forsting, A., Troldborg, N., Bechmann, A., and Réthoré, P.-E.:
Modelling Wind Turbine Inflow: The Induction Zone, PhD thesis, DTU Wind
Energy, Denmark, https://doi.org/10.11581/DTU:00000022, 2017. a, b

Michelsen, J.: Basis3D – a platform for development of multiblock PDE solvers,
Tech. rep., Dept. of Fluid Mechanics, Technical University of Denmark, DTU,
1994a. a

Michelsen, J.: Block structured multigrid solution of 2D and 3D elliptic
PDE's, Tech. rep., Dept. of Fluid Mechanics, Technical University of
Denmark, DTU, 1994b. a

Mikkelsen, R.: Actuator Disc Methods Applied to Wind Turbines, PhD thesis,
Technical University of Denmark, 2003. a, b

Nathan, J.: Application of Actuator Surface Concept in LES Simulations of the
Near Wake of Wind Turbines, PhD thesis, École de Technologie
Supérieure, Montreal, Canada, 2018. a

Oseen, C.: Über Wirbelbewegung in einer reibenden Flüssigkeit, Arkiv
för matematik, astronomi och fysik, Ark. Mat. Astron. Fys., 7, 14–21, 1911. a, b, c

Patanker, S. and Spalding, D.: A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Tran., 15, 59–98, 1972. a

Pirrung, G. R., Hansen, M. H., and Madsen, H. A.: Improvement of a near wake
model for trailing vorticity, J. Phys. Conf. Ser., 555, 012083,
https://doi.org/10.1088/1742-6596/555/1/012083, 2014. a, b

Pirrung, G., Madsen, H. A., Kim, T., and Heinz, J.: A coupled near and far
wake model for wind turbine aerodynamics, Wind Energy, 19, 2053–2069,
https://doi.org/10.1002/we.1969, 2016. a, b

Pirrung, G., Riziotis, V., Madsen, H., Hansen, M., and Kim, T.: Comparison of a coupled near- and far-wake model with a free-wake vortex code, Wind Energ. Sci., 2, 15–33, https://doi.org/10.5194/wes-2-15-2017, 2017a. a

Pirrung, G. R., Madsen, H. A., and Schreck, S.: Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill, Wind Energ. Sci., 2, 521–532, https://doi.org/10.5194/wes-2-521-2017, 2017b. a, b

Ramos-García, N., Shen, W. Z., and Sørensen, J. N.: Validation of a
three-dimensional viscous-inviscid interactive solver for wind turbine
rotors, Renew. Energ., 70, 78–92, https://doi.org/10.1016/j.renene.2014.04.001, 2014a. a

Ramos-García, N., Shen, W. Z., and Sørensen, J. N.: Three-dimensional
viscous-inviscid coupling method for wind turbine computations, Wind Energy, 19, 67–93, https://doi.org/10.1002/we.1821, 2014b. a

Ramos-García, N., M. Mølholm, J. N. S., and Walther, J. H.: Hybrid
vortex simulations of wind turbines using a three-dimensional
viscous-inviscid panel method, Wind Energy, 20, 1187–1889,
2017. a, b

Réthoré, P.-E. and Sørensen, N.: A discrete force allocation algorithm
for modelling wind turbines in computational fluid dynamics, Wind Energy, 15,
915–926, https://doi.org/10.1002/we.525, 2012. a

Shen, W., Sørensen, J., and Mikkelsen, R.: Tip loss correction for
actuator/Navier Stokes computations, J. Sol. Energ.-T. ASME, 59,
209–213, 2005. a

Shives, M. and Crawford, C.: Mesh and load distribution requirements for
actuator line CFD simulations, Wind Energy, 16, 657–669, https://doi.org/10.1002/we.1546,
2013. a, b, c, d, e

Sørensen, J. N. and Shen, W. Z.: Numerical modelling of wind turbine wakes,
J. Fluid. Eng.-T. ASME, 124, 393–399, https://doi.org/10.1115/1.1471361, 2002.
a, b, c

Sørensen, N.: General purpose flow solver applied to flow over hills, PhD
thesis, Risø National Laboratory, 1995. a, b

Squire, H. B.: The growth of a vortex in turbulent flow, Aeronaut.
Quart., 16, 302–306, 1965. a

Strelets, M.: Detached eddy simulation of massively separated flows, in:
39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-0879,
Reno, NV, 2001. a

Troldborg, N., Sørensen, J., and Mikkelsen, R.: Actuator Line Modeling of
Wind Turbine Wakes, PhD thesis, Technical University of Denmark, 2009. a, b, c, d

Vollmer, L., Steinfeld, G., and Kühn, M.: Transient LES of an offshore wind turbine, Wind Energ. Sci., 2, 603–614, https://doi.org/10.5194/wes-2-603-2017, 2017. a