Articles | Volume 4, issue 1
https://doi.org/10.5194/wes-4-41-2019
https://doi.org/10.5194/wes-4-41-2019
Research article
 | 
24 Jan 2019
Research article |  | 24 Jan 2019

Automatic measurement and characterization of the dynamic properties of tethered membrane wings

Jan Hummel, Dietmar Göhlich, and Roland Schmehl

Related authors

Swinging Motion of a Kite with Suspended Control Unit Flying Turning Manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-121,https://doi.org/10.5194/wes-2023-121, 2023
Revised manuscript accepted for WES
Short summary
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023,https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary
Clustering wind profile shapes to estimate airborne wind energy production
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020,https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Aerodynamic characterization of a soft kite by in situ flow measurement
Johannes Oehler and Roland Schmehl
Wind Energ. Sci., 4, 1–21, https://doi.org/10.5194/wes-4-1-2019,https://doi.org/10.5194/wes-4-1-2019, 2019
Short summary
System identification, fuzzy control and simulation of a kite power system with fixed tether length
Tarek N. Dief, Uwe Fechner, Roland Schmehl, Shigeo Yoshida, Amr M. M. Ismaiel, and Amr M. Halawa
Wind Energ. Sci., 3, 275–291, https://doi.org/10.5194/wes-3-275-2018,https://doi.org/10.5194/wes-3-275-2018, 2018

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Akdağ, S. A., Güler, Ö., and Yağci, E.: Wind speed extrapolation methods and their effect on energy generation estimation, in: Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013, https://doi.org/10.1109/ICRERA.2013.6749793, 2013. a
Archer, C. L.: An Introduction to Meteorology for Airborne Wind Energy, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green energy and technology, chap. 5, Springer, Berlin Heidelberg, 81–94, https://doi.org/10.1007/978-3-642-39965-7_5, 2013. a
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation, J. Guid. Control Dynam., 37, 1426–1436, https://doi.org/10.2514/1.G000545, 2014. a, b
Bosman, R., Reid, V., Vlasblom, M., and Smeets, P.: Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and Technology, chap. 33, Springer, Berlin Heidelberg, 563–585, https://doi.org/10.1007/978-3-642-39965-7_33, 2013. a
Breukels, J.: An Engineering Methodology for Kite Design, PhD thesis, Delft University of Technology, ISBN: 978-90-8891-230-6, available at: http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf (last access: 19 January 2019), 2011. a
Download
Short summary
We describe a tow test setup for the reproducible measurement of aerodynamic, structural dynamic and flight dynamic properties of tethered membrane wings. The test procedure is based on repeatable automated maneuvers with the entire kite system under realistic conditions. The developed measurement method can be used to quantitatively compare different wing designs, to validate and improve simulation models, and to systematically improve kite designs.
Altmetrics
Final-revised paper
Preprint