Research articles
24 Jan 2019
Research articles | 24 Jan 2019
Automatic measurement and characterization of the dynamic properties of tethered membrane wings
Jan Hummel et al.
Related authors
System identification, fuzzy control and simulation of a kite power system with fixed tether length
Tarek N. Dief, Uwe Fechner, Roland Schmehl, Shigeo Yoshida, Amr M. M. Ismaiel, and Amr M. Halawa
Wind Energ. Sci., 3, 275-291, https://doi.org/10.5194/wes-3-275-2018,https://doi.org/10.5194/wes-3-275-2018, 2018
Related subject area
A systematic approach to offshore wind turbine jacket predesign and optimization: geometry, cost, and surrogate structural code check models
Jan Häfele, Rick R. Damiani, Ryan N. King, Cristian G. Gebhardt, and Raimund Rolfes
Wind Energ. Sci., 3, 553-572, https://doi.org/10.5194/wes-3-553-2018,https://doi.org/10.5194/wes-3-553-2018, 2018
Short summary
The risks of extreme load extrapolation
Stefan F. van Eijk, René Bos, and Wim A. A. M. Bierbooms
Wind Energ. Sci., 2, 377-386, https://doi.org/10.5194/wes-2-377-2017,https://doi.org/10.5194/wes-2-377-2017, 2017
Short summary
Cited articles
Akdağ, S. A., Güler, Ö., and Yağci, E.: Wind speed
extrapolation methods and their effect on energy generation estimation, in:
Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23
October 2013,
https://doi.org/10.1109/ICRERA.2013.6749793, 2013.
a
Archer, C. L.: An Introduction to Meteorology for Airborne Wind Energy, in:
Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R.,
Green energy and technology, chap. 5, Springer, Berlin Heidelberg, 81–94,
https://doi.org/10.1007/978-3-642-39965-7_5, 2013.
a
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Dynamic nonlinear
aeroelastic model of a kite for power generation, J. Guid. Control Dynam.,
37, 1426–1436,
https://doi.org/10.2514/1.G000545, 2014.
a,
b
Bosman, R., Reid, V., Vlasblom, M., and Smeets, P.: Airborne Wind Energy
Tethers with High-Modulus Polyethylene Fibers, in: Airborne Wind Energy,
edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and
Technology, chap. 33, Springer, Berlin Heidelberg, 563–585,
https://doi.org/10.1007/978-3-642-39965-7_33, 2013.
a
Breukels, J.: An Engineering Methodology for Kite Design, PhD thesis, Delft
University of Technology, ISBN: 978-90-8891-230-6, available at:
http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
(last access: 19 January 2019), 2011. a
Breukels, J., Schmehl, R., and Ockels, W.: Aeroelastic Simulation of Flexible
Membrane Wings based on Multibody System Dynamics, in: Airborne Wind Energy,
edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and
Technology, chap. 16, Springer, Berlin Heidelberg, 287–305,
https://doi.org/10.1007/978-3-642-39965-7_16, 2013.
a
Bungart, M.: Fluid-Struktur Kopplung an einem RAM-Air-Kiteschirm, Master's
thesis, University of Stuttgart, 2009. a
Costa, D.: Experimental Investigation of Aerodynamic and Structural
Properties of a Kite, Master's thesis, ETH Zurich, 2011. a
Dadd, G. M., Hudson, D. A., and Shenoi, R. A.: Comparison of two kite force
models with experiment, J. Aircraft, 47, 212–224,
https://doi.org/10.2514/1.44738,
2010.
a
de Groot, S. G. C., Breukels, J., Schmehl, R., and Ockels, W. J.: Modelling
Kite Flight Dynamics Using a Multibody Reduction Approach, J. Guid. Control
Dynam., 34, 1671–1682,
https://doi.org/10.2514/1.52686, 2011.
a,
b
de Wachter, A.: Deformation and Aerodynamic Performance of a Ram-Air Wing,
Master's thesis, Delft University of Technology, available at:
http://resolver.tudelft.nl/uuid:786e3395-4590-4755-829f-51283a8df3d2
(last access: 19 January 2019), 2008. a
Dunker, S.: Ram-Air Wing Design Considerations for Airborne Wind Energy, in:
Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R.,
Green Energy and Technology, chap. 31, Springer, Berlin Heidelberg, 517–546,
https://doi.org/10.1007/978-3-642-39965-7_31, 2013.
a
Dunker, S.: Tether and Bridle Line Drag in Airborne Wind Energy Applications,
in: Airborne Wind Energy – Advances in Technology Development and Research,
edited by: Schmehl, R., Green Energy and Technology, chap. 2, Springer,
Singapore, 29–56,
https://doi.org/10.1007/978-981-10-1947-0_2, 2018.
a
Erhard, M. and Strauch, H.: Theory and Experimental Validation of a Simple
Comprehensible Model of Tethered Kite Dynamics Used for Controller Design,
in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R.,
Green Energy and Technology, chap. 8, Springer, Berlin Heidelberg, 141–165,
https://doi.org/10.1007/978-3-642-39965-7_8, 2013a.
a,
b
Fagiano, L., Zgraggen, A. U., Morari, M., and Khammash, M.: Automatic
crosswind flight of tethered wings for airborne wind energy:modeling, control
design and experimental results, IEEE T. Contr. Syst. T., 22, 1433–1447,
https://doi.org/10.1109/TCST.2013.2279592, 2014.
a
Fechner, U. and Schmehl, R.: Flight Path Planning in a Turbulent Wind
Environment, in: Airborne Wind Energy – Advances in Technology Development
and Research, edited by: Schmehl, R., Green Energy and Technology, chap. 15,
Springer, Singapore, 361–390,
https://doi.org/10.1007/978-981-10-1947-0_15, 2018.
a
Fechner, U., van der Vlugt, R., Schreuder, E., and Schmehl, R.: Dynamic Model
of a Pumping Kite Power System, Renew. Energ., 83, 705–716,
https://doi.org/10.1016/j.renene.2015.04.028, 2015.
a,
b,
c
Ghita, M. R., Andrei, H., and Marin, O. F.: Modeling of wind resource to the
turbine hub height, in: Proceedings of the International Conference on
Electronics, Computers and Artificial Intelligence (ECAI), IEEE, Pitesti,
Romania, 27-29 June 2013, 1–6,
https://doi.org/10.1109/ECAI.2013.6636175, 2013.
a
Gohl, F. and Luchsinger, R. H.: Simulation Based Wing Design for Kite Power,
in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R.,
Green Energy and Technology, chap. 18, Springer, Berlin Heidelberg, 325–338,
https://doi.org/10.1007/978-3-642-39965-7_18, 2013.
a
Hummel, J.: Automatisierte Vermessung und Charakterisierung der dynamischen
Eigenschaften seilgebundener, vollflexibler Tragflächen, Dissertation,
Technische Universität Berlin, Berlin,
https://doi.org/10.14279/depositonce-5863,
2017.
a,
b,
c
Hummel, J. and Göhlich, D.: Automatic Measurement and Characterization of
the Dynamic Properties of Tethered Flexible Wings, in: Book of Abstracts of
the International Airborne Wind Energy Conference 2017, edited by: Diehl, M.,
Leuthold, R., and Schmehl, R., University of Freiburg & Delft University of
Technology, Freiburg, Germany, 126–127, available at:
http://resolver.tudelft.nl/uuid:89050243-6bc6-4e25-88f1-dcf4f6145bfe
(last access: 19 January 2019), 2017. a
Johari, H., Yakimenko, O., and Jann, T.: Aerodynamic Characterization of
Parafoils, in: Precision Aerial Delivery Systems: Modeling, Dynamics, and
Control, edited by: Yakimenko, O. A., Progress in Astronautics and
Aeronautics, chap. 4, American Institute of Aeronautics and Astronautics,
Inc., 199–261,
https://doi.org/10.2514/5.9781624101960.0199.0262, 2014.
a
Leuthold, R. C.: Multiple-Wake Vortex Lattice Method for Membrane Wing Kites,
Master's thesis, Delft University of Technology,
http://resolver.tudelft.nl/uuid:4c2f34c2-d465-491a-aa64-d991978fedf4(last
access: 19 January 2019), 2015. a
Mulder, J. A., Sridhar, J. K., and Breeman, J. H.: Identification of Dynamic
Systems: Applications to Aircraft, Part 2, Nonlinear Analysis and Manoeuvre
Design, in: RTO AGARDograph 300: Flight Test Technique Series, vol. 3,
Advisory Group for Aerospace Research and Development (AGARD), Neuilly sur
Seine, available at:
https://www.sto.nato.int/publications/AGARD/AGARD-AG-300-3-II/AGARDAG300.pdf
(last access: 19 January 2019), 1994. a
Schmehl, R., Noom, M., and van der Vlugt, R.: Traction Power Generation with
Tethered Wings, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M.,
and Schmehl, R., Green Energy and Technology, chap. 2, Springer, Berlin
Heidelberg, 23–45,
https://doi.org/10.1007/978-3-642-39965-7_2, 2013.
a,
b,
c,
d
Stevenson, J., Alexander, K., and Lynn, P.: Kite performance testing by
flying in a circle, Aeronaut. J., 109, 269–276,
https://doi.org/10.1017/S0001924000000725, 2005.
a
Stevenson, J. C.: Traction Kite Testing and Aerodynamics, PhD thesis,
University of Canterbury, available at:
http://hdl.handle.net/10092/7688 (last access: 19 January 2019), 2003. a
Tauber, M. and Moroder, P.: Kite Surfing and Snow Kiting, in: Adventure and
Extreme Sports Injuries: Epidemiology, Treatment, Rehabilitation and
Prevention, edited by: Mei-Dan, O. and Carmont, M. R., chap. 8, Springer,
London, 173–187,
https://doi.org/10.1007/978-1-4471-4363-5_8, 2013.
a
van der Vlugt, R.: Aero- and Hydrodynamic Performance Analysis of a Speed
Kiteboarder, Master's thesis, Delft University of Technology, available at:
http://resolver.tudelft.nl/uuid:9e0c7a62-149c-4fab-8d27-afe15c1a8795
(last access: 19 January 2019), 2010.
a,
b
van der Vlugt, R., Peschel, J., and Schmehl, R.: Design and Experimental
Characterization of a Pumping Kite Power System, in: Airborne Wind Energy,
edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and
Technology, chap. 23, Springer, Berlin Heidelberg, 403–425,
https://doi.org/10.1007/978-3-642-39965-7_23, 2013.
a
van Reijen, M.: The Turning of Kites: A Quantification of Known Theories,
Master's thesis, Delft University of Technology, available at:
http://resolver.tudelft.nl/uuid:5836c754-68d3-477a-be32-8e1878f85eac
(last access: 19 January 2019), 2018. a
Wood, T. A., Hesse, H., and Smith, R. S.: Predictive Control of Autonomous
Kites in Tow Test Experiments, IEEE Control Systems Letters, 1, 110–115,
https://doi.org/10.1109/LCSYS.2017.2708984, 2017.
a