Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic
WES | Articles | Volume 4, issue 4
Wind Energ. Sci., 4, 633–644, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Wind Energ. Sci., 4, 633–644, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Nov 2019

Research article | 18 Nov 2019

On the self-similarity of wind turbine wakes in a complex terrain using large eddy simulation

Arslan Salim Dar et al.
Related authors  
From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases
Nikolay Dimitrov, Mark C. Kelly, Andrea Vignaroli, and Jacob Berg
Wind Energ. Sci., 3, 767–790,,, 2018
Short summary
How does turbulence change approaching a rotor?
Jakob Mann, Alfredo Peña, Niels Troldborg, and Søren J. Andersen
Wind Energ. Sci., 3, 293–300,,, 2018
Short summary
Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)
Gordon B. Bonan, Edward G. Patton, Ian N. Harman, Keith W. Oleson, John J. Finnigan, Yaqiong Lu, and Elizabeth A. Burakowski
Geosci. Model Dev., 11, 1467–1496,,, 2018
Short summary
Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741,,, 2016
Modeling the diurnal cycle of conserved and reactive species in the convective boundary layer using SOMCRUS
Donald H. Lenschow, David Gurarie, and Edward G. Patton
Geosci. Model Dev., 9, 979–996,,, 2016
Related subject area  
Wind and turbulence
Adjoint-based calibration of inlet boundary condition for atmospheric computational fluid dynamics solvers
Siamak Akbarzadeh, Hassan Kassem, Renko Buhr, Gerald Steinfeld, and Bernhard Stoevesandt
Wind Energ. Sci., 4, 619–632,,, 2019
Short summary
Wind turbine load dynamics in the context of turbulence intermittency
Carl Michael Schwarz, Sebastian Ehrich, and Joachim Peinke
Wind Energ. Sci., 4, 581–594,,, 2019
Short summary
Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580,,, 2019
Short summary
Significant multidecadal variability in German wind energy generation
Jan Wohland, Nour Eddine Omrani, Noel Keenlyside, and Dirk Witthaut
Wind Energ. Sci., 4, 515–526,,, 2019
Short summary
First identification and quantification of detached-tip vortices behind a wind energy converter using fixed-wing unmanned aircraft system
Moritz Mauz, Alexander Rautenberg, Andreas Platis, Marion Cormier, and Jens Bange
Wind Energ. Sci., 4, 451–463,,, 2019
Short summary
Cited articles  
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104,, 2015. a, b
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbulence, 17, 420–441, 2016. a
Alfredsson, P. H. and Segalini, A.: Introduction Wind farms in complex terrains: an introduction, Philos. T. Roy. Soc. A , 375, 20160096,, 2017. a
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108,, 2015. a
Astolfi, D., Castellani, F., and Terzi, L.: A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data, J. Sol. Energy Eng., 140, 031001,, 2018. a
Publications Copernicus
Short summary
We have performed computer simulations of turbulent air over hills with wind turbines located on the hill tops. Behind the wind turbines the wind speed is reduced and the air is even more turbulent. Together we call these features for the wind turbine wake. We find that the wake has a self-similar shape. This means that its shape is only a function of the reduced wind speed found in the wake and the width of the wake and hence not of the complexity and shape of the hills.
We have performed computer simulations of turbulent air over hills with wind turbines located on...