Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic
WES | Articles | Volume 5, issue 1
Wind Energ. Sci., 5, 29–49, 2020
https://doi.org/10.5194/wes-5-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 5, 29–49, 2020
https://doi.org/10.5194/wes-5-29-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Jan 2020

Research article | 03 Jan 2020

Cluster wakes impact on a far-distant offshore wind farm's power

Jörge Schneemann et al.
Related authors  
Uncertainty identification of blade-mounted lidar-based inflow wind speed measurements for robust feedback–feedforward control synthesis
Róbert Ungurán, Vlaho Petrović, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 677–692, https://doi.org/10.5194/wes-4-677-2019,https://doi.org/10.5194/wes-4-677-2019, 2019
Short summary
Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019,https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary
An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer
Mehdi Vali, Vlaho Petrović, Gerald Steinfeld, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 139–161, https://doi.org/10.5194/wes-4-139-2019,https://doi.org/10.5194/wes-4-139-2019, 2019
Short summary
Robust active wake control in consideration of wind direction variability and uncertainty
Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Wingerden, and Martin Kühn
Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018,https://doi.org/10.5194/wes-3-869-2018, 2018
Short summary
Determination of optimal wind turbine alignment into the wind and detection of alignment changes with SCADA data
Niko Mittelmeier and Martin Kühn
Wind Energ. Sci., 3, 395–408, https://doi.org/10.5194/wes-3-395-2018,https://doi.org/10.5194/wes-3-395-2018, 2018
Short summary
Related subject area  
Wind and turbulence
A double-multiple streamtube model for vertical axis wind turbines of arbitrary rotor loading
Anis A. Ayati, Konstantinos Steiros, Mark A. Miller, Subrahmanyam Duvvuri, and Marcus Hultmark
Wind Energ. Sci., 4, 653–662, https://doi.org/10.5194/wes-4-653-2019,https://doi.org/10.5194/wes-4-653-2019, 2019
Short summary
On the self-similarity of wind turbine wakes in a complex terrain using large eddy simulation
Arslan Salim Dar, Jacob Berg, Niels Troldborg, and Edward G. Patton
Wind Energ. Sci., 4, 633–644, https://doi.org/10.5194/wes-4-633-2019,https://doi.org/10.5194/wes-4-633-2019, 2019
Short summary
Adjoint-based calibration of inlet boundary condition for atmospheric computational fluid dynamics solvers
Siamak Akbarzadeh, Hassan Kassem, Renko Buhr, Gerald Steinfeld, and Bernhard Stoevesandt
Wind Energ. Sci., 4, 619–632, https://doi.org/10.5194/wes-4-619-2019,https://doi.org/10.5194/wes-4-619-2019, 2019
Short summary
Wind turbine load dynamics in the context of turbulence intermittency
Carl Michael Schwarz, Sebastian Ehrich, and Joachim Peinke
Wind Energ. Sci., 4, 581–594, https://doi.org/10.5194/wes-4-581-2019,https://doi.org/10.5194/wes-4-581-2019, 2019
Short summary
The Power Curve Working Group's Assessment of Wind Turbine Power Performance Prediction Methods
Joseph C. Y. Lee, Peter Stuart, Andrew Clifton, M. Jason Fields, Jordan Perr-Sauer, Lindy Williams, Lee Cameron, Taylor Geer, and Paul Housley
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-69,https://doi.org/10.5194/wes-2019-69, 2019
Revised manuscript under review for WES
Short summary
Cited articles  
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/JTECH-D-13-00104.1, 2014. a
Barthelmie, R. J. and Jensen, L. E.: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm, Wind Energy, 13, 573–586, https://doi.org/10.1002/we.408, 2010. a, b, c, d, e
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Beck, H. and Kühn, M.: Temporal Up-Sampling of Planar Long-Range Doppler LiDAR Wind Speed Measurements Using Space-Time Conversion, Remote Sens., 11, 867, https://doi.org/10.3390/rs11070867, 2019. a
Publications Copernicus
Download
Short summary
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend over more than 50 km. We analysed the impact of these so-called cluster wakes on a distant wind farm using remote-sensing wind measurements and power production data. Cluster wakes caused power losses up to 55 km downstream in certain atmospheric states. A better understanding of cluster wake effects reduces uncertainties in offshore wind resource assessment and improves offshore areal planning.
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend...
Citation